Enamels are made by painting a substrate, typically metal, with powdered glass; minerals called color oxides provide coloration. After firing at a temperature of 750–850 degrees Celsius (1380–1560 degrees Fahrenheit), the result is a fused lamination of glass and metal. Unlike most painted techniques, the surface can be handled and wetted Enamels have traditionally been used for decoration of precious objects,[22] but have also been used for other purposes. Limoges enamel was the leading centre of Renaissance enamel painting, with small religious and mythological scenes in decorated surrounds, on plaques or objects such as salts or caskets. In the 18th century, enamel painting enjoyed a vogue in Europe, especially as a medium for portrait miniatures.[23] In the late 20th century, the technique of porcelain enamel on metal has been used as a durable medium for outdoor murals.[24]
This difference becomes most important when there are several independent ways of extending functionality. In some object-oriented programming languages, classes cannot be created at runtime, and it is typically not possible to predict, at design time, what combinations of extensions will be needed. This would mean that a new class would have to be made for every possible combination. By contrast, decorators are objects, created at runtime, and can be combined on a per-use basis. The I/O Streams implementations of both Java and the .NET Framework incorporate the decorator pattern.
This decorator works by storing the time just before the function starts running (at the line marked # 1) and just after the function finishes (at # 2). The time the function takes is then the difference between the two (at # 3). We use the time.perf_counter() function, which does a good job of measuring time intervals. Here are some examples of timings:

Oil painting is the process of painting with pigments that are bound with a medium of drying oil, such as linseed oil, which was widely used in early modern Europe. Often the oil was boiled with a resin such as pine resin or even frankincense; these were called 'varnishes' and were prized for their body and gloss. Oil paint eventually became the principal medium used for creating artworks as its advantages became widely known. The transition began with Early Netherlandish painting in northern Europe, and by the height of the Renaissance oil painting techniques had almost completely replaced tempera paints in the majority of Europe.
In Python 2.4a3 (to be released this Thursday), everything remains as currently in CVS. For 2.4b1, I will consider a change of @ to some other single character, even though I think that @ has the advantage of being the same character used by a similar feature in Java. It's been argued that it's not quite the same, since @ in Java is used for attributes that don't change semantics. But Python's dynamic nature makes that its syntactic elements never mean quite the same thing as similar constructs in other languages, and there is definitely significant overlap. Regarding the impact on 3rd party tools: IPython's author doesn't think there's going to be much impact; Leo's author has said that Leo will survive (although it will cause him and his users some transitional pain). I actually expect that picking a character that's already used elsewhere in Python's syntax might be harder for external tools to adapt to, since parsing will have to be more subtle in that case. But I'm frankly undecided, so there's some wiggle room here. I don't want to consider further syntactic alternatives at this point: the buck has to stop at some point, everyone has had their say, and the show must go on.
This code works for our purposes but it’s not exactly dynamic. If we wanted our initial simpleMsg object to sometimes act excited and sometimes quizzical, we could only do so by instantiating entirely new objects from the relevant subclass. Moreover, the ExcitedAndQuizzicalMessage is really just a combination of ExcitedMessage and QuizzicalMessage and probably shouldn’t have its own class. To fix these problems, let’s now return to the decorator pattern and see how it might help us.
Decorator Abstractions: Our decorator abstraction takes the form of the abstract MessageDecorator class, which also implements IMessage. The MessageDecorator class has a constructor that accepts an IMessage object as a parameter and then assigns it to a private variable. For its part, MessageDecorator doesn’t have any special behaviors and simply delegates GetMessage and PrintMessage calls to whichever IMessage object was injected into it.
The primary objection to this form is that it requires "peeking inside" the method body to determine the decorators. In addition, even though the code is inside the method body, it is not executed when the method is run. Guido felt that docstrings were not a good counter-example, and that it was quite possible that a 'docstring' decorator could help move the docstring to outside the function body.
Modifying classes in this fashion is also possible, though the benefits are not as immediately apparent. Almost certainly, anything which could be done with class decorators could be done using metaclasses, but using metaclasses is sufficiently obscure that there is some attraction to having an easier way to make simple modifications to classes. For Python 2.4, only function/method decorators are being added.
Moreover, the use of language is only an abstraction for a color equivalent. The word "red", for example, can cover a wide range of variations from the pure red of the visible spectrum of light. There is not a formalized register of different colors in the way that there is agreement on different notes in music, such as F or C♯. For a painter, color is not simply divided into basic (primary) and derived (complementary or mixed) colors (like red, blue, green, brown, etc.).
×