In a previous article, we discussed how to use the strategy pattern to dynamically change an object’s behavior at runtime. Classically, polymorphism in object-oriented design is static and achieved through inheritance; however, with the strategy pattern you can accomplish the same goal dynamically. Indeed, this is an excellent way to handle situations when you need an object to exhibit different behavior at different times. However, it’s worth noting that the strategy pattern requires mutation of the object you’re working with. By using the strategy pattern, you are necessarily changing the algorithm that an object uses for a given behavior. In some situations, it may be preferable not to mutate a given object. Or more likely, you won’t even have the option of mutating an object because it may come from a codebase over which you have no control (such as an external library). Such cases are relatively common; however, it’s still possible to enhance an immutable object’s behavior. One effective means to do so is with the decorator pattern.
In general, functions in Python may also have side effects rather than just turning an input into an output. The print() function is a basic example of this: it returns None while having the side effect of outputting something to the console. However, to understand decorators, it is enough to think about functions as something that turns given arguments into a value.
Painter & Decorator About the Job: An opportunity has arisen for a Painter & Decorator join our Engineering Team at Jumeirah Carlton Tower & Jumeirah Lowndes Hotel The main purpose of this Painter & Decorator role is to: Provide a friendly, courteous and professional service to our guests and colleagues whilst carrying out general decorating works, to include PPM work to all rooms and public areas Complete all PPM work in a timely manner and to the required standard To carry out repairs and maintenance to the building when needed To assist other engineering colleagues when required To use HotSOS to start and complete all works To arrive to work on time and be dressed accordingly To maintain good working relationships with all colleagues To correctly log all works and timesheets About you:
Component Interface: The component interface is an abstraction describing the behaviors of the components that you will eventually use in your program. Any objects that will use these components will do so through the interface, meaning that they are principally concerned with the abstraction (not the actual object). This is what allows both objects and wrapped objects to be considered to be the same type.
Painters deal practically with pigments,[6] so "blue" for a painter can be any of the blues: phthalocyanine blue, Prussian blue, indigo, Cobalt blue, ultramarine, and so on. Psychological and symbolical meanings of color are not, strictly speaking, means of painting. Colors only add to the potential, derived context of meanings, and because of this, the perception of a painting is highly subjective. The analogy with music is quite clear—sound in music (like a C note) is analogous to "light" in painting, "shades" to dynamics, and "coloration" is to painting as the specific timbre of musical instruments is to music. These elements do not necessarily form a melody (in music) of themselves; rather, they can add different contexts to it.
In a previous article, we discussed how to use the strategy pattern to dynamically change an object’s behavior at runtime. Classically, polymorphism in object-oriented design is static and achieved through inheritance; however, with the strategy pattern you can accomplish the same goal dynamically. Indeed, this is an excellent way to handle situations when you need an object to exhibit different behavior at different times. However, it’s worth noting that the strategy pattern requires mutation of the object you’re working with. By using the strategy pattern, you are necessarily changing the algorithm that an object uses for a given behavior. In some situations, it may be preferable not to mutate a given object. Or more likely, you won’t even have the option of mutating an object because it may come from a codebase over which you have no control (such as an external library). Such cases are relatively common; however, it’s still possible to enhance an immutable object’s behavior. One effective means to do so is with the decorator pattern.

The discussion continued on and off on python-dev from February 2002 through July 2004. Hundreds and hundreds of posts were made, with people proposing many possible syntax variations. Guido took a list of proposals to EuroPython 2004 [7], where a discussion took place. Subsequent to this, he decided that we'd have the Java-style [10] @decorator syntax, and this appeared for the first time in 2.4a2. Barry Warsaw named this the 'pie-decorator' syntax, in honor of the Pie-thon Parrot shootout which occurred around the same time as the decorator syntax, and because the @ looks a little like a pie. Guido outlined his case [8] on Python-dev, including this piece [9] on some of the (many) rejected forms.

Modern artists have extended the practice of painting considerably to include, as one example, collage, which began with Cubism and is not painting in the strict sense. Some modern painters incorporate different materials such as sand, cement, straw or wood for their texture. Examples of this are the works of Jean Dubuffet and Anselm Kiefer. There is a growing community of artists who use computers to "paint" color onto a digital "canvas" using programs such as Adobe Photoshop, Corel Painter, and many others. These images can be printed onto traditional canvas if required.
×